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ABSTRACT
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Imagery data offer the potential to answer critical questions regarding the relevance 
and effectiveness of development initiatives, providing a factual basis for decision-
making and the refinement of policies and programs.

Imagery data, encompassing a diverse array of sources from remote-sensing imagery 
to digital photos, offer a vast and underused resource for understanding the dynamics 
of change in urban development and other geospatial phenomena. Despite their 
ubiquity, imagery data remain relatively neglected in the evaluation of international 
development interventions, primarily on account of perceived barriers in relation 
to computation and expertise. However, recent advances in machine learning and 
increased computational resources have made imagery data more accessible.

This paper explores the potential of imagery data in evaluations and presents various 
data types and methodologies, demonstrating their advantages and limitations. 
An Independent Evaluation Group case study on a World Bank urban development 
project in Bathore, Albania, illustrates the practical application of different imagery 
data and methodologies.

By leveraging imagery data, evaluators can gain insights into the geographical 
impact of development interventions. Moreover, integrating imagery data with other 
information sources, such as surveys and socioeconomic statistics, offers strong 
potential for deepening the understanding of complex phenomena.
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Imagery is one of the most ubiquitous data sources, and imagery data encompass 
a large variety of data types, including remote-sensing imagery (such as images 
produced by optical satellites, imaging radars, or drones), digital photos, medical 
images (such as X-rays or images obtained from magnetic resonance imaging), 
and videos. As stated by Tanimoto (2012, 3), “There are probably more pixels 
in the world now (on [websites], in people’s personal computers, in their digital 
cameras, [and so on]) than there are printed characters in all of the libraries in 
the world.… Furthermore, the volume of worldwide pixel data is growing as a re-
sult of more digital cameras, higher resolution, and richer formats.” The explosive 
growth in the volume of available imagery data that Tanimoto describes opens 
new opportunities for analysis.

Within the context of international development, however, images remain a 
neglected data source in comparison with other sources, such as numeric and text 
data. This neglect is partly due to the perception that working with images can be 
extremely costly, from both a computational and a data collection perspective. In 
addition, imagery data carry the expectation that highly specialized knowledge 
and software are needed to extract any useful meaning from images.

Although these challenges remain to some degree, the development of new 
machine-learning algorithms and recent increases in computational resources 
have made imagery data more accessible and substantially lowered the barriers to 
using them. Robust open-source alternatives for geographic information system 
and statistical software now include powerful libraries for processing and analyz-
ing imagery data. Many image-based data products for which all required prepro-
cessing tasks have been performed and that can be used directly for analysis (for 
example, monthly and annual composites of satellite nighttime lights data) are 
also readily available.

Evaluations, in particular, can greatly benefit from incorporating imagery 
analysis, especially those for projects delivered in a defined geographic area 
(such as a transport route or a development zone) or focusing on a phenomenon 
(such as coral bleaching, ocean litter, or agricultural crop replacement) that can 
be modeled using geospatial analysis tools. Imagery obtained through remote 
sensing—the acquisition, processing, and interpretation of images and related 
data typically acquired from aircraft and satellites using sensor systems that 
digitally record the interactions between electromagnetic energy and matter 
(Sabins and Ellis 2020)—is especially relevant for geospatial analysis, given that 
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such imagery is often publicly available at a global scale, can be used to understand 
a broad range of phenomena, and has high temporal coverage, making it suitable 
for time series analysis. Although their use is less widespread than that of remote-
sensing imagery, digital photos (such as streetscape images) are also becoming an 
important data source for geospatial analysis, particularly when computer vision 
techniques are applied. In the context of evaluations, geospatial analysis can be used 
to precisely quantify changes, across time and space, in phenomena of interest (such 
as changes in urban extent, water balance in large basins, or deforestation patterns); 
can provide valuable inputs for understanding the effectiveness or relevance of an 
intervention; and can be integrated within more complex causal analyses.

This paper discusses the specific challenges in evaluations that can be addressed 
using imagery data and explores the use of different types of imagery data and 
their corresponding methodologies, while emphasizing the advantages and limita-
tions of working with each type of data. It employs as an example an Independent 
Evaluation Group analysis—selected because it incorporates different types of 
imagery data and methodologies—of a 1998–2005 World Bank urban development 
project in Bathore, Albania. Ultimately, the paper aims to provide evaluators and 
other stakeholders with information on how to effectively leverage the use of 
imagery data in the context of evaluations to help identify and understand the 
geographical impact of development interventions and direct development efforts 
where they are most needed.





1
PROJECT 

BACKGROUND AND 
CHALLENGES 



Identification of 
Geographic Boundary

Identification of 
Appropriate Data Sources
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Project Description

The Independent Evaluation Group (IEG) has been exploring the use of different 
techniques of imagery analysis—including the use of both remote-sensing imagery 
and digital images—to understand changes in spatial phenomena over time (for 
example, assessing changes in land use or monitoring deforestation) and to help 
answer questions on the relevance and effectiveness of development interven-
tions. One example is an IEG assessment of the impact of the World Bank’s Land 
Development Project (P040975) implemented between 1998 and 2005 in Albania. 
The project aimed to provide essential infrastructure to underserviced and neglected 
areas in participating municipalities and to strengthen the institutions responsible 
for the delivery of urban services at the national and local levels. It focused strongly 
on infrastructure development, including roads, water supply, drainage, sewerage, 
electricity, street lighting, and domestic garbage collection. The project was orga-
nized in relation to several pilots, one of which (the subject of our study) took place 
in Bathore.

Bathore, in the administrative unit of Kamëz (municipality of Kamëz, county of 
Tirana), is located approximately 7 kilometers northwest of Albania’s capital, Tirana, 
in an area that was previously agricultural land and mostly state owned as part of a 
cooperative. Difficulties in accessing the housing market in the early 1990s and the 
movement of large numbers of people from peripheral areas toward the center made 
several agricultural territories in proximity to Tirana a fertile ground for informal 
development. This migration and the resulting rapid urbanization led to the forma-
tion of informal settlements in Bathore toward the end of 1994 as the area attracted 
many migrants trying to settle in the vicinity of Tirana. The area started to develop 
quickly, and state authorities were unable to respond to this quick development 
with infrastructure. Soon, Bathore became a highly dense but informally developed 
peri-urban area with a severe lack of infrastructure and services (Shutina 2021). The 
World Bank’s project aimed to upgrade these informal neighborhoods.

The IEG study attempted to determine the extent of urban growth in the Bathore 
pilot area and the level of integration of informal settlements into the formal urban 
fabric. More specifically, the study aimed to address two questions:

1. To what extent did land use/land cover change during the project 

implementation period? “Land use/land cover” describes how land is 
employed across classes (such as agricultural land, water, woodlands, 
and built-up environment). The regular monitoring of changes in land 
use/land cover across time is essential to ensure sustainable urban 
development and provides valuable inputs to guide development 
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interventions. The study was particularly interested in understanding the 
shift from agricultural land to built-up areas during this period.

2. To what extent were households in upgraded neighborhoods 

integrated into the formal economy as a result of road improvements? 
Neighborhood improvements stimulate private investment, integrate 
informal settlements into the formal urban fabric, and increase 
neighborhoods’ density in a cohesive manner. Linking neighborhoods to 
transportation systems provides them with access to local services and 
jobs. Informal settlements are often cut off from transport networks, 
preventing households from accessing job opportunities and services. 
According to the project’s Implementation Completion and Results 
Report, only 20 percent of households in the project area had members 
who were employed before the project, reflecting the isolation of informal 
settlements from the formal economy.

Practical Challenges

Identification of Geographic Boundary

Geospatial analyses usually involve superimposing multiple layers of data, all of 
which share the same spatial extent (that is, the area of analysis), on one another. 
Therefore, the first building block in constructing an appropriate data set for the 
analysis was developing a data layer that could be used to define the precise bound-
ary lines of the study area. This boundary would then define the geographic extent 
of any subsequent layers of data. Defining an area’s boundary can sometimes be a 
trivial operation because it often matches political or administrative boundaries 
(such as those of countries, provinces, or cities). However, in this instance, the area 
of analysis did not match any preexisting boundary.

The team conducting the analysis resolved this challenge by triangulating multiple 
sources of data (including printed maps in World Bank reports and available satellite 
and drone imagery of the area) and consulting multiple times with the project team 
and local organizations that had been involved in implementing the project. Once 
the precise project area was identified, we mapped a polygon (shape file) corre-
sponding to this area with an appropriate geographic coordinate reference system 
using the geographic information system (GIS) software QGIS.

Once we had precisely delineated the study area, the next step was to measure its 
surface area—important information because it often guides selection of appropriate 
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data sources for analysis (figure 1.1). In this case, we determined that the study area 
covered approximately 45 hectares.

Figure 1.1. �Study Area and Location and Extent of Study Area

Source: Independent Evaluation Group.

Note: Panel a shows the study area (in red), overlaid on Kamëz’s and Tirana’s current administrative 

boundaries on a base map from the OpenStreetMap database (for more information, see OpenStreet-

Map Foundation (accessed October 21, 2022), https://www.openstreetmap.org). Panel b displays the 

location and extent of the study area within Albania’s national boundaries.

Identification of Appropriate Data Sources

The study’s small area of analysis, coupled with the fact that project implementation 
started in 1998, made finding compatible data, from both a spatial and a temporal 
perspective, considerably challenging. Traditional data sources, such as surveys, 
excluded geocoded observations at the time of project implementation. More im-
portant, even if geocoded data had been available for that period, they would likely 
have lacked a sufficient number of observations that overlapped with the study area. 
Within this context, imagery data became essential for the analysis because they 
can help fill gaps in traditional data sources and produce the spatially disaggregated 
estimates that are required to obtain robust findings.

a. Study area b. Study area location in Albania





2
METHODOLOGY



Data Source: 
Streetscape Digital 

Photos

Data Source: Optical 
Satellite Imagery
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Given the limited availability of suitable data from traditional data sources, the 
current analysis required highly customized data collection and methodologies that 
relied heavily on daylight imagery data (both satellite imagery and streetscape dig-
ital photos). We also used ancillary data sources, such as data on points of interest, 
road networks, and interview records, to complement these data.

Our analysis applied two innovative methods. Subsequent sections of the paper 
elaborate on the theoretical foundations and the practical implementation details of 
both methods.

 ▪ Method 1: Supervised classification of optical satellite images to determine 
the evolution over time of the composition of land use/land cover classes. 
The analysis was based on training a machine-learning algorithm to classify 
individual pixels of satellite images across four classes:1 built-up environ-
ment, forest, water, and agricultural land.

 ▪ Method 2: Semantic segmentation of digital photos of urban scenes. This 
technique—an application of deep learning and convolutional neural net-
works—aims to label each pixel in an image with the corresponding class 
of what is being represented (for example, sky, roads, or buildings). These 
features can then be geocoded, plotted in maps, and used to quantify the 
urban appearance of a city or area across multiple dimensions.

Method 1: Multispectral Supervised Classification  
of Optical Satellite Imagery to Derive Land Use/Land  
Cover Classes

Although the terms land use and land cover are often used interchangeably, each has 
a precise meaning, and the two are typically estimated using different data sources 
and different methodologies. Land use refers to land’s economic use (such as resi-
dential areas, agriculture, and parks), and land cover refers to physical cover on the 
ground (such as bare soil, crops, and water). For example, a built-up area (land cover) 
can be used in diverse ways, such as for residential, manufacturing, or cultural pur-
poses (land use). When used jointly, land use/land cover refers to the categorization 
of human activities and natural elements of a landscape within a specific time frame 
and based on an established methodology (Sabins and Ellis 2020).

Several approaches exist for modeling land use/land cover changes, including man-
ual, numerical, and digital approaches. Land use/land cover modeling is not new, 
with examples dating from the early 1970s (Brown et al. 2012). Recently, however, 
machine learning has contributed new methodological advances to greatly aid in the 
modeling task.
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Several readily available models also include land use/land cover classes. One widely 
used land use/land cover model—moderate-resolution imaging spectroradiometer 
land cover type (MCD12Q1)2 —derives global land cover types at yearly intervals 
(2001–20) from satellite data. These existing models, however, typically have  
only moderate spatial resolution (approximately 500 meters in the case of the  
moderate-resolution imaging spectroradiometer), which makes them more suitable 
for larger areas of analysis.

Consequently, as it was not possible to use existing models, our analysis derived 
land use/land cover classes using a pixel-based classification approach in which 
each pixel in an image is classified as belonging to one land use/land cover class 
(our analysis used four such classes: built-up environment, forest, water, and agri-
cultural land). Broadly, there are two approaches to performing this classification: 
unsupervised and supervised. Unsupervised classification considers only the data 
and focuses on identifying common patterns in images. In supervised classification, 
a training set of specific pixels that are known to belong to each of the classes is 
first developed; then, a classification model is trained, based on this sample data, to 
recognize and categorize pixels over the same classes but over a much larger area. 
Supervised classification is generally the preferred approach when there are suffi-
cient data to build the needed training set. Our analysis relied on supervised classifi-
cation approaches.

Data Source: Optical Satellite Imagery

Our analysis used as its primary data source optical satellite imagery: images of the 
Earth captured by imaging satellites operated by space agencies and private corpo-
rations. Although satellite images are often displayed as photos, these two visual 
presentations involve very different data types. Satellite images capture data beyond 
the visible range of the electromagnetic spectrum and store this information in 
spectral bands, each capturing a specific section of the spectrum.3 The most common 
photo representation of a satellite image, a true color composite, combines the red, 
green, and blue color bands to produce the closest possible photographic represen-
tation of a satellite image. This image is just a representation, however, and captures 
only a fraction of the data the satellite image contains.

For classification purposes, it is customary to combine different bands because they 
can reveal different patterns in the data. For example, a false color composite com-
bining the infrared band and the red and green bands (as illustrated in figure 2.1) 
makes vegetation easier to detect because it is displayed in a distinctive red color.
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Figure 2.1. Color Composites for Highlighting Data

Source: Copernicus program, European Space Agency. 

Note: Panel a shows a true color composite (red, green, and blue bands within the visual band); panel 

b shows a false color composite (infrared band and red and green bands within the visual band) of the 

city of Tirana, Albania, May 5, 2021, as captured by Sentinel-2, an Earth observation mission from the 

European Space Agency’s Copernicus program.

Another important concept is spatial resolution, which refers, broadly, to the corre-
sponding size, on the ground, of one pixel in a satellite image. Pixels are square and 
defined by a single number representing their ground dimensions. For example, each 
pixel in a satellite image with a 10-meter resolution covers an area of 10 × 10 meters 
on the ground. Spatial resolution for satellite images typically ranges from a few 
hundred meters to just a few centimeters. Each unit increase in an image’s resolu-
tion increases the amount of critical information contained in each pixel exponen-
tially. In other words, images with a large pixel size have low spatial resolution and 
do not allow much visual detail to be displayed. Contrarily, images with a small  
pixel size have high spatial resolution and allow more visual details to be observed.  
Figure 2.2 illustrates different levels of spatial resolution.

a. True color composite b. False color composite
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Figure 2.2. �Comparison of Different Levels of Spatial Resolution for the 
Same Area

Source: NOAA Data Access Viewer (Open Access). 

Note: The images shown of Tirana city center display different levels of spatial resolution.

Our analysis used imagery from Landsat 7,4 an Earth-observing satellite from the 
National Aeronautics and Space Administration that was launched in 1999 and 
remained in orbit until April 2022. Landsat 7 imagery provides a continuous time 
series of data that overlaps with the study period. Landsat 7 images encompass 
eight spectral bands, with a spatial resolution of 30 meters for bands 1 to 7 (blue, 
green, red, near infrared, shortwave infrared, and thermal) and 15 meters for band  
8 (panchromatic).

Methodological Considerations

Data selection. We selected images for the area under analysis for each year in the 
period 1999–2010 to enable us to observe the evolution of land use/land cover class-
es over time.

a. 1-meter resolution b. 10-meter resolution

c. 30-meter resolution d. 250-meter resolution
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Data processing. Before the analysis, we subjected the images we selected to at-
mospheric correction, which removes the absorption and scattering effects of the 
atmosphere on the reflectance values of optical remote-sensing imagery. In addi-
tion, we applied panchromatic sharpening (pansharpening) to 30-meter images to 
transform them into images with 15-meter spatial resolution (Choi, Park, and Seo 
2019). Pansharpening, an image fusion technique, creates a color image with en-
hanced visual detail by merging an image’s multispectral bands, which offer high 
spectral resolution but lower spatial resolution, with the panchromatic (black-and-
white) band, which provides high spatial resolution but lower spectral resolution. 
Essentially, pansharpening employs mathematical algorithms to generate a single 
image that has both high spatial and high spectral resolution.

Training and validation sets. We generated training and validation data by visually 
inspecting the texture of the images. We used 80 percent of the total pixels in the 
images for each year as training data for model development, reserving the remain-
ing 20 percent for use as a validation set to evaluate the model’s accuracy.

Classification. Machine learning, a subset of artificial intelligence, encompasses a 
set of algorithms that can automatically learn from data without being explicitly 
programmed. We used five machine-learning algorithms—random forest, support 
vector machine, gradient-boosted decision tree, naive Bayes, and classification and 
regression tree—for image classification. Random forest, an ensemble learning al-
gorithm, combines the outputs of multiple decision trees. Support vector machine is 
an algorithm rooted in geometric approaches that aims to identify hyperplanes that 
separate individual observations into classes. Algorithms that use gradient-boosted 
decision trees combine many weaker learning models (in this case, decision trees) 
to create a strong predictive model. Naive Bayes is a probabilistic classifier based on 
Bayes theorem; unlike Bayes theorem, it assumes that feature values are condition-
ally independent given a particular class. Finally, models based on classification and 
regression trees rely on a hierarchical structure and identify cutoff values to parti-
tion data among different classes.

Validation. We assessed the accuracy of each of the machine-learning models in 
performing the classification task using the validation set of data from each year 
(that is, the set of data that was not used for model development, as described earli-
er). Table 2.1 shows the results of these validation tests. As the table shows, overall, 
support vector machine was the best-performing classifier, with accuracy ranging 
between 79.75 percent and 98.93 percent.
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Table 2.1. Land Use/Land Cover Validation Accuracy

Validation Accuracy (%)

Year RF SVM GBDT NB CART

1999 84.22 82.45 84.59 42.30 81.98

2000 92.95 95.28 92.48 36.96 90.15

2001 76.75 84.34 76.68 50.13 77.49

2002 82.70 82.53 82.23 42.68 83.06

2003 85.24 79.75 85.39 40.25 82.89

2004 92.84 94.43 92.91 41.28 91.99

2005 87.93 89.86 87.47 19.25 83.60

2006 98.09 98.93 97.86 47.10 97.18

2007 88.03 87.53 87.98 34.44 86.97

2008 88.52 87.60 88.39 11.87 89.84

2009 82.50 90.56 81.06 31.26 79.75

2010 82.87 84.29 81.58 73.26 81.58

Source: Independent Evaluation Group.

Note: Values in boldface represent the classifier with the highest accuracy in each year. CART = clas-

sification and regression tree; GBDT = gradient-boosted decision tree; NB = naive Bayes; RF = random 

forest; SVM = support vector machine.

Visual inspection of each classified image (figure 2.3) shows a consistent pattern of 
built-up areas within the area of analysis (which serves as additional confirmation of 
a particular model’s validity). Furthermore, local experts with extensive GIS exper-
tise verified the final results qualitatively.
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Summary of Main Findings

Figure 2.3 shows the land use/land cover maps generated using the support vector 
machine model for 1999–2010. As these time series maps show, agricultural areas 
significantly decreased within the study area during this period, whereas built-up 
areas significantly increased.

Figure 2.3. �Bathore Land Use/Land Cover Maps Generated Using the 
Support Vector Machine Model

Source: Independent Evaluation Group. 

Calculating the percentage of the total pixels in each of the images analyzed that 
were classified into each of the four categories permits us to quantify precisely the 
visual perception of change. Table 2.2 presents summary statistics for each class 
and each year. For example, the built-up classification represented 55.92 percent of 
the area of interest in 1999, but it had increased to 85.86 percent by 2010.

1999 2000 2001 2002

2003 2004 2005 2006

2007 2008 2009 2010

Built-Up Forest Water Agriculture
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Table 2.2. �Summary Statistics for Each Classification Derived with the 
Land Use/Land Cover Model for Bathore

Validation Accuracy (%)

Year Built-Up Forest Water Agriculture

1999 55.92 1.15 0.00 42.94 

2000 84.77 0.42 0.00 14.81 

2001 80.42 1.38 0.00 18.21 

2002 61.67 19.15 0.00 19.19 

2003 74.59 1.40 0.00 24.01 

2004 69.40 0.57 0.00 30.03 

2005 65.33 0.13 0.00 34.54 

2006 66.03 0.62 0.00 33.35 

2007 78.68 1.05 0.00 20.27 

2008 71.12 0.17 0.04 28.67 

2009 68.97 2.59 0.00 28.44 

2010 85.86 0.04 0.02 14.08

Source: Independent Evaluation Group.

Note: The figures provided in the table offer a depiction of long-term trends. Fluctuations observed 

from year to year are anticipated and can be attributed to several factors: (i) the small area of analysis, 

(ii) the relatively coarse spatial resolution of the satellite imagery utilized, and (iii) the heterogeneous 

nature of the area, particularly evident along urban-rural boundaries or within rapidly developing urban 

fringes. These combined factors contribute to the occurrence of “mixed pixels”—where individual pixels 

within the imagery contain a blend of different land cover types—which adds complexity to the analysis.
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Of particular interest in this case was the increased urbanization of this area that 
was observed. As noted in the Project Description section in chapter 1, before the 
1990s, the land around Bathore was agricultural and mostly state owned as part of  
a cooperative. In 1999, the year the project started, the area was still largely used  
for agricultural activities (42.94 percent, by the model’s classification). As the  
project aimed at upgrading the area’s urban infrastructure, a transformation in land 
use (a reduction in agricultural land and an increase in built-up areas) was expected. 
The presented analysis allowed IEG to corroborate and measure the extent of  
this transformation.

Advantages

Satellite imagery is an excellent resource for spatial analysis. Among its unique 
advantages are its high temporal and spatial resolution, long time series (starting 
from 1972 for Landsat), consistency, global scale, and ease of comparability across 
countries (Estoque 2020). The use of satellite imagery is typically a cost-efficient 
alternative to on-the-ground data collection because a substantial portion of optical 
satellite imagery is publicly available. It is also considerably more time-efficient 
than data collection on the ground. Furthermore, machine-learning algorithms  
applied to remote-sensing imagery perform well, are fast, and have a high degree  
of accuracy.

More specifically for land use/land cover mapping, the methodology presented in 
this section is very flexible and allows users to customize (i) the number of classes 
(more or fewer classes can be covered based on the scope of the analysis), (ii) the 
frequency of the analysis, and (iii) the scale needed for the analysis (global, national, 
or for any defined area of analysis).

Furthermore, a distinct advantage of the methodology described in this section is 
that it allowed fairly precise measurement of the phenomenon of urban transfor-
mation in the area of interest over time, which is particularly useful for observing 
temporal changes over the same area. In addition, and as previously noted, given the 
small surface area of the project, we could not have achieved the same level of gran-
ularity in terms of different land uses if we had relied on traditional data sources.

Caveats and Limitations

Although the barriers to entry for using remote-sensing imagery have substantially 
lowered in recent years, there are still specific technical requirements to consider. 
Remote-sensing imagery tends to involve large amounts of complex data and  
requires sufficient storage and computational resources. This includes access to  
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specialized GIS software—such as ArcGIS (proprietary) or QGIS (open-source)— 
or the use of programming languages (such as Python) or both. In addition,  
remote-sensing imagery is a very specialized data type; therefore, prior knowledge 
and expertise are necessary to access, process, and use remote-sensing images for 
analysis. Furthermore, and depending on the analysis to be performed, knowledge  
of machine learning might also be needed.

For the mapping of land use/land cover classes, it is essential to select the right level 
of imagery resolution to enable observation of the details needed for the analysis 
that is being undertaken. The classification of imagery data into very granular classes 
might require access to very high-resolution satellite imagery, which can be costly.

An important caveat that also needs to be mentioned is the importance of validating 
the findings obtained from remote-sensing data. Several alternatives exist for miti-
gating the biases inherent in digital geospatial data (such as those from instrument 
calibration, atmospheric effects, topographic effects, noise and artifacts, and  
seasonal and temporal variability) and ensuring data accuracy. These include 
cross-referencing the data used for analysis with data from additional authoritative 
data sources, especially those that are not user generated—for example, ground 
surveys, census data, and governmental or corporate data sources—(Crampton et al. 
2013; Sieber and Haklay 2015) and incorporating qualitative data and local knowl-
edge into the analysis to ensure that the maps that are produced tell a complete 
story (Esnard 1998). In this case, we validated the findings through (i) comparisons 
with additional satellite imagery not included in the land use/land cover modeling 
(specifically, Sentinel images) and (ii) consultations with local GIS experts.

Method 2: Semantic Segmentation of Digital Photos to 
Derive Fine-Grained Urban Indicators

To gain some understanding regarding the extent to which households in upgrad-
ed neighborhoods in the study area were integrated into the formal economy, we 
derived several urban indicators. For comparison purposes, we derived all indicators 
for the pilot area, two nearby areas of similar characteristics that were not part of 
the pilot, and the city of Tirana.

We estimated several indicators (such as density of points of interest, proportion  
of urban land used, proportion of land covered with buildings, density of  
transportation facilities, and length of roads) using standard GIS methodologies.  
We derived two additional indicators—greenness and sky openness—from digital 
photos. “Greenness” refers not only to the presence of open green spaces (such as 
parks) but also to the number of trees that line streets and private lawns. There is 
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substantial literature linking a higher level of greenness in a city with improved 
mental and physical health, increased productivity, and a reduction of carbon foot-
prints (Li et al. 2015; Li and Ratti 2018; Seiferling et al. 2017). “Sky openness” refers 
to the proportion of the sky that can be seen from a given point (Fang, Liu, and Zhou 
2020). In an urban setting, sky openness tends to be linked with building height— 
as building height increases, sky openness decreases (Xia, Yabuki, and Fukuda 2021).

We derived the greenness and sky openness indicators using semantic segmenta-
tion, a computer vision technique. Standard GIS methodologies typically work with 
vector and raster data formats that represent different geographic features and 
attributes (such as roads, land parcels, and topography information). In contrast, 
computer vision—a field of artificial intelligence that enables computers to derive 
information from images and other visual input—primarily deals with image and 
video data and aims to recognize objects, identify patterns, and extract information 
from images. Semantic segmentation takes an image as an input and, using an  
algorithm that groups pixels that have similar visual characteristics, outputs an  
image in which each pixel has been classified as belonging to one of a group of  
specific predefined classes. Figure 2.4 illustrates the results of applying the semantic  
segmentation algorithm to some digital photos of Tirana.

Figure 2.4. �Examples of Semantic Segmentation

Source: Independent Evaluation Group. 

Note: The top row of images presents photographs of the city of Tirana extracted from Mapillary,  

a crowdsourced open platform that allows users to upload geotagged photos. The corresponding  

images in the bottom row show the output from application of the semantic segmentation algorithm.

As the images in figure 2.4 demonstrate, the semantic segmentation algorithm 
greatly simplifies the level of detail in input photos. However, this simplification 
allows various features present in a photo (such as roads, buildings, vegetation, sky, 
and cars) to be clearly identified as belonging to a particular image class because 
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each feature is colored with a specific shade. These classes can then be used to 
derive various indicators for further analysis. Although in this particular analysis, 
we were interested in measurement and in obtaining some descriptive statistics, 
indicators obtained from semantic segmentation can also be integrated as an input 
for econometric analyses (see, for example, Suzuki et al. 2023).

Modern semantic segmentation algorithms, such as the one we used for this analy-
sis, are built based on a neural network architecture. Neural networks are a compu-
tational paradigm based on interconnected nodes in a layered structure that aims to 
mimic the way the human brain learns and processes information. For this analysis, 
we used the PixelLib Python library,5 which implements a semantic segmentation 
algorithm based on a convolutional neural network—a type of artificial neural 
network used to analyze imagery—pretrained on the state-of-the art ADE20K data 
set.6 ADE20K includes more than 27,000 images of urban scenes manually annotated 
across more than 150 classes.

Data Source: Streetscape Digital Photos

Streetscape images refer to digital photos of urban scenes captured with digital 
cameras or smartphones. Although the use of streetscape photos for geospatial 
analysis is less widespread than the use of satellite images, interest in this appli-
cation of streetscape photos has been steadily increasing (Biljecki and Ito 2021). In 
addition to estimating greenness (Ki and Lee 2021; Nagata et al. 2020; Suzuki et al. 
2023) and sky openness (Liang et al. 2017; Xia, Yabuki, and Fukuda 2021; Zeng et al. 
2018), streetscape images have been used in the literature (i) to determine neigh-
borhoods’ socioeconomic attributes by extracting from photos the make, model, 
and year of vehicles encountered in particular neighborhoods and triangulating this 
information with data from the census of motor vehicles (Gebru et al. 2017); (ii) to 
determine building age by extracting features from images of buildings and treating 
estimation of building age as a regression problem (Li et al. 2018); (iii) to estimate 
house prices by extracting from exterior images features that relate to the urban 
environment at both the street and aerial levels (rather than using interior images) 
and identifying proxies that measure the visual desirability of neighborhoods that 
can be incorporated into econometric models (Law, Paige, and Russell 2019); (iv) 
to quantify urban perception by creating a crowdsourced data set containing imag-
es of multiple cities and annotations from online volunteers who categorize each 
photo according to six perceptual attributes (safe, lively, boring, wealthy, depress-
ing, and beautiful) and then using the data set as training data for a convolutional 
neural network architecture (Dubey et al. 2016); (v) to ascertain cities’ walkability 
using compositions of segmented streetscape elements (such as buildings and 
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street trees) and a regression-style model to predict street walkability (Nagata et 
al. 2020); (vi) to assess street quality by combining street view image segmentation 
to delineate physical characteristics of street networks, using topic modeling with 
points-of-interest data to extract socioeconomic information and automatic urban 
function classification (Hu et al. 2020); and (vii) to measure the quality and impact 
of urban appearance by developing an algorithm that computes the perceived safety 
of streetscapes and applying this algorithm to create high-resolution “evaluative 
maps” of perceived safety (Naik, Raskar, and Hidalgo 2016).

Streetscape imagery is ideal for fine-grained spatial data collection. In contrast, 
satellite imagery (with the exception, perhaps, of very high-resolution data) lacks 
sufficient detail for this purpose. Therefore, streetscape imagery is ideal for the 
analysis of small areas.

Furthermore, the use of different computer vision techniques allows processing of 
a large number of photos in a short amount of time and extraction of their relevant 
features. These features can then be geocoded, mapped, and used to quantify the 
urban appearance of an area of interest across multiple dimensions.

A wealth of streetscape photos is publicly available from platforms such as Google 
Street View and Mapillary.7 Whereas Mapillary is a crowdsourced open platform that 
allows users to upload geotagged photos, Google Street View relies on Google’s data 
capture equipment. The latter makes Google Street View’s images more homoge-
neous. Another consideration is that Google Street View provides stitched panora-
mas, which might be more suitable for some applications. Coverage varies greatly 
among different street view imagery providers across the globe; thus, it is generally 
a good practice to compare coverage across multiple providers to determine which 
one will provide the most suitable data for a particular application or analysis. 
Additional data can also be collected easily because only a smartphone is required 
to capture the required images.

Methodological Considerations

Initial data collection. We extracted streetscape images for each of the areas of 
interest from Mapillary, which currently offers more than 2.8 billion streetscape im-
ages worldwide. Using the precise latitude and longitude coordinates of each image, 
which are included in the images’ metadata, we plotted the location of each image 
as a point on a map.

Grid overlay. To ensure that we included in the analysis photos belonging to 
different parts of each area of analysis, we designed a grid and overlaid it on maps 
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showing the images’ location. The grid was designed to have cells measuring 1 
kilometer × 1 kilometer.

Image selection. Because the performance of the segmentation algorithm is sensi-
tive to factors such as seasonal variabilities (especially in connection to the green-
ness indicator), time-of-day photos were taken, as were field-of-view photos, and a 
subset of all available images was selected to ensure that the set of photos used in 
the analysis was reasonably homogeneous.

Complementary data collection. For those cells in the grid for which no images 
were publicly available, a local consultant took additional photos in the field using a 
smartphone. In total, more than 1,000 images were selected for the areas of interest 
(of which approximately 100 were photos taken by the local consultant).

Semantic segmentation. The semantic segmentation algorithm was applied to all 
selected images.

Calculation of pixel ratio. An image’s greenness ratio can be defined as the total 
number of green pixels in the image divided by the total number of pixels. Similarly, 
an image’s sky openness ratio can be estimated as the number of blue pixels in the 
image divided by the total number of pixels.

Mapping. Given that we knew the precise geographic coordinates for each photo 
for which the greenness and sky openness ratios were calculated, we were able to 
visually represent these indicators in a map. To obtain a continuous representation, 
we estimated ratio values for the areas between the images’ locations by applying 
an inverse distance weighting interpolation algorithm. This algorithm approximates 
unknown values by averaging the values of nearby points based on a distance met-
ric, assigning a higher weight to the values for those points closest to the unknown 
point. Figure 2.5 presents the maps we generated of the greenness and sky openness 
indicators for the city of Tirana.
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Figure 2.5. �Greenness and Sky Openness for the City of Tirana

Source: Independent Evaluation Group. 

Note: Panel a maps the greenness indicator values, and panel b maps the sky openness indicator 

values.

Robustness checks. To test the robustness of our indicators, we performed two 
tests: (i) for the greenness indicator, we compared the map derived from the images 
with OpenStreetMap data showing the presence of parks and other open green ar-
eas, and (ii) for both indicators, local consultants conducted on-the-ground validity 
checks for selected areas.

Main Findings

The combination of multiple data sources and methodologies allowed us to de-
rive fine-grained urban indicators, which offer a more nuanced and detailed view 
of urban development than traditional metrics and can be instrumental in better 
assessing the social and economic impact of urban development interventions. 
Furthermore, and as illustrated in figure 2.6 (summarizing the indicators derived for 
the areas of interest), this methodology also allowed us to compare several areas of 
interest to determine their level of urbanization across the same dimensions.

b. Sky opennessa. Greenness
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Figure 2.6. �Urban Indicators for Areas of Interest

Source: Independent Evaluation Group. 

Note: The figure presents values derived for urban indicators for the pilot area (Bathore), for two addi-

tional areas with characteristics similar to those of Bathore (zones 2 and 3), and for the city of Tirana.  

POI = point of interest.

Advantages

Gathering fine-grained urban data is typically a time-consuming and costly exercise 
that requires extensive field visits and the development and application of clear data 
collection protocols. The pairing of streetscape photos and computer vision algo-
rithms opens up many innovative opportunities for detailed and rigorous analyses 
of urban phenomena.

Notable advantages of streetscape imagery are its ease of access and global cover-
age. Goel et al. (2018) estimated that publicly available streetscape imagery covered 
half of the world’s population at the time of their research, and it seems reasonable 
to assume that this figure has substantially increased since then. Furthermore, 
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c. Zone 2 d. Zone 3
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and unlike with satellite imagery, streetscape images in addition to those available 
through public data platforms are easy to capture with any device (such as a smart-
phone) capable of taking digital photos.

Most important, access to a global data set creates promising prospects for deriving 
standardized indicators of urban development and conducting comparative stud-
ies for different cities across the globe. This is extremely challenging when relying 
exclusively on traditional data sources (such as cadastral data or land use surveys), 
which are typically collected at the municipality level (Prakash et al. 2020).

Caveats and Limitations

Even though streetscape imagery is on the path to achieving global coverage, 
crowdsourced street-level imagery faces some limitations to achieving full coverage. 
These include logistic difficulties, legal restrictions on capturing images of certain 
areas, and safety considerations (Quinn and León 2019). For example, a study of 
street-level coverage of images in Brazil found low coverage at both ends of the 
socioeconomic spectrum. Although lower-income areas remained undermapped 
because lack of roads makes access difficult, more affluent neighborhoods were un-
dermapped because of the presence of gated communities where street-level photos 
cannot be taken (Quinn and León 2019). Generally speaking, the undermapping of 
certain areas is an important consideration that needs to be assessed before pro-
ceeding with a specific analysis because it could introduce biases into the data used 
for the analysis and lead to an inadequate understanding of the local context. The 
undermapping of poor areas is particularly concerning in the context of the evalu-
ation of development interventions; this issue can directly affect poverty estimates 
derived from imagery data and lead to inadequate targeting efforts, which might 
result in key intended beneficiaries being missed.

Temporal considerations impose more substantial limitations because streetscape 
data were not collected in the past. The lack of past data severely restricts research-
ers’ ability to create time series of streetscape data to conduct longitudinal studies. 
This limitation, however, is expected to diminish over time as new data are collected.

In addition, computer vision algorithms are computationally intensive and require 
large volumes of data to identify patterns in the data. Therefore, the use of this 
type of algorithm is most suitable for studies involving small areas. Nevertheless, as 
computational resources increase and algorithms become more efficient at opti-
mizing computations, these applications could be feasible for use in regard to larger 
areas (Ki and Lee 2021).
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The use of computer vision algorithms—especially neural networks—presents some 
additional challenges in regard to transparency and interpretability of results. Many 
of these algorithms are opaque in the sense that the mathematical operations and 
transformations performed on the data might not be fully traceable, rendering the 
algorithms virtual black boxes.

Finally, from a more practical perspective, in addition to the computational resourc-
es needed to store and process the images, working effectively with computer vision 
algorithms requires prior knowledge of machine learning and image processing and 
analysis. The application of most computer vision algorithms requires familiarity 
with programming languages, such as Python, including specialized libraries for 
computer vision tasks.
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Endnotes

1 Machine learning, a subset of artificial intelligence, encompasses a set of algorithms that 

can automatically learn from data without being explicitly programmed.

2 For more information on the moderate-resolution imaging spectroradiometer, see the 

National Aeronautics and Space Administration website at https://modis.gsfc.nasa.gov/data/

dataprod/mod12.php; for more information on MCD12Q1, see the United States Geological 

Survey website at https://lpdaac.usgs.gov/products/mcd12q1v006.

3 The electromagnetic spectrum comprises seven bands: gamma rays, X-rays, ultraviolet, 

visible, infrared, microwaves, and radio waves. Most optical satellite images are captured in 

the visible and infrared parts of the spectrum. Other remote-sensing images are captured in 

other parts of the spectrum (for example, radar imagery is captured in the microwave band).

4 For more information on Landsat 7, see the United States Geological Survey website at 

https://www.usgs.gov/landsat-missions/landsat-7.

5 For more information on PixelLib, see https://Pixellib.readthedocs.io/en/latest.

6 For more information on the ADE20K data set, see the Massachusetts Institute of 

Technology Computer Science & Artificial Intelligence Laboratory Computer Vision Group 

website at https://groups.csail.mit.edu/vision/datasets/ADE20K.

7 For more information on Google Street View and Mapillary, see https://www.google.com/

streetview and https://www.mapillary.com, respectively.

http://google.com/streetview
http://google.com/streetview
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The descriptions of the methodologies in chapters 1 and 2 have aimed to illustrate 
how daylight satellite imagery and streetscape imagery can be used to help answer 
evaluation questions. These methodologies are only illustrative examples, however, 
and they merely scratch the surface of the numerous possibilities for using imagery 
data to evaluate international development interventions.

The use of remote-sensing imagery in the context of international development 
is particularly well established. For example, Kavvada et al. (2020) estimate that 
remote-sensing data can provide significant data for monitoring 33 of the subindi-
cators for the Sustainable Development Goals. The most direct connections between 
these goals and remote sensing can be found for Sustainable Development Goals 6 
(clean water and sanitation), 15 (life on land), 14 (life below water), and 11 (sustain-
able cities and communities). Similarly, Paganini et al. (2018) reported that Earth 
observations support 10 of the 17 Sustainable Development Goals, about 40 of the 
169 targets, and about 30 of the 232 indicators. Recent studies have also demon-
strated the usefulness of Earth observation data for tracking progress toward other 
goals. For example, in a study focused on the detection of brick kilns in a 1.5-mil-
lion-square-kilometer area in South Asia, Boyd et al. (2018) developed a methodol-
ogy for the detection of slavery activity (Sustainable Development Target 8.7) in a 
reliable and spatially disaggregated manner using high-resolution satellite data pro-
vided by Google Earth. As stated in their study, “By using remotely sensed data, and 
associated geospatial science and technology, the lack of reliable and timely, spatial-
ly explicit and scalable data on slavery activity that has been a major barrier could 
be overcome. Indeed[,] this is just one of many examples of how crucial remotely 
sensed data are to achieving a more sustainable world” (Boyd et al. 2018, 387).

It should be noted that remote-sensing applications are not limited to daylight 
satellite imagery. Other remote-sensing imagery products, such as nighttime satel-
lite data (nighttime lights) and radar imagery, are also particularly useful for inter-
national development evaluations. Nighttime lights data show the distribution of 
luminosity of nighttime lights across the world and have been used for many appli-
cations, such as estimating urban extent, assessing electrification of remote areas, 
and monitoring disasters and conflict. Radar imagery has been used, for example, 
for forest mapping, estimating cloud cover, and understanding ocean processes and 
their changes.

In addition to extracting different classes from imagery using semantic 
segmentation, other computer vision algorithms can be applied to streetscape data 
to detect specific objects (such as street lights and benches), estimate the height of 
buildings, or create three-dimensional representations of areas (Ibrahim, Haworth, 
and Cheng 2020). An interesting example is the work conducted by Vanhoey et al. 
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(2017), which developed an approach for automating the construction of a city-scale 
three-dimensional model based on semantic segmentation and machine processing 
of urban components (such as roads, vegetation, and buildings).

Imagery data can also be used to derive insightful global and geographically dis-
aggregated data sets for characteristics such as population, settlements, and land 
cover. These data sets can, indirectly and in conjunction with other data sources, be 
used for many international development applications, including assessing disaster 
vulnerability, urban planning, monitoring agricultural productivity, and tracking 
deforestation trends, all of which are critical for informed decision-making and sus-
tainable development efforts. They can also provide the level of granularity needed 
to ensure that the right beneficiaries are being targeted in development interven-
tions. An example can be found in the generation of a global spatially detailed in-
ventory of human settlements in urban and rural areas using radar imagery (Esch et 
al. 2017), which provides a global binary filter of all urban and rural settlements with 
a spatial resolution of 0.4 arc seconds (about 12 meters). The inventory was derived 
by processing more than 180,000 scenes generated by two twin Earth observation 
satellites, TerraSAR-X and TanDEM-X, and has a validation accuracy of approxi-
mately 85 percent.

Furthermore, the current abundance of readily available geospatial data—beyond 
imagery data—that can be used in conjunction with imagery data offers endless pos-
sibilities. These include, for example, geosocial media data (such as geotagged data 
from X, formerly known as Twitter; Zook 2017) and real-time data (closed-circuit 
television records, cellular telephone records, and the like; Wilson 2015; Zook 2017), 
which have been used for deriving “smart city” metrics (such as transportation con-
nectivity, waste management, economic vitality, and quality of life) that are helpful 
for understanding questions related to urban life. This field of research also poses 
interesting methodological and theoretical challenges because harmonizing such 
diverse data sources is usually a complex process.



CONCLUSION
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Imagery data—including satellite imagery and streetscape photos—offer a 
valuable resource for comprehensively measuring the dynamics of change in 
different geographies and across varying time periods because they capture 
visual information pertaining to the environment, infrastructure, and human 
activities. Over time, these images can reveal significant changes, enabling the 
assessment of urban development, environmental transformations, alterations 
in land use, and more. By harnessing this rich source of visual data, it is possible 
to monitor and analyze the evolution of regions with unparalleled precision. 
Furthermore, these data offer the capacity to answer critical questions regarding 
the relevance and effectiveness of development initiatives, providing a factual 
basis for decision-making and the refinement of policies and programs.

Moreover, a key strength of imagery data emerges when they are integrated with 
data from other sources, such as surveys, socioeconomic statistics, and environ-
mental monitoring. This approach yields a richer understanding of how specific 
changes in the visual landscape correlate with shifts in economic and demo-
graphic indicators, offering deeper insights into the complexities of regional 
development.

The emergence of new data analysis techniques—such as deep learning, seman-
tic segmentation, and neural networks—has greatly facilitated working with 
images and presents many opportunities to leverage imagery data in a time- and 
cost-effective manner. It is expected that these opportunities will only continue 
to increase because computer vision is currently a very active area of research, 
with new algorithms being constantly developed to efficiently analyze and  
extract meaning from imagery data.

A large repository of imagery data is publicly available, and such data, for the 
most part, have global coverage. Remote-sensing imagery, in particular, also has 
availability for a long time series. This can be instrumental in addressing the 
challenges posed by the lack of standardized and comparable indicators across 
different geographies or across different time periods. Furthermore, imagery data 
can generate granular and spatially disaggregated information, which is vital  
for examining whether development efforts are directed where they are most  
needed. Imagery data, however, are not devoid of limitations.

From a more substantial perspective, it is important to note that imagery data 
are often used as proxies for complex phenomena (for example, digital photos 
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depicting the physical characteristics of houses can be used as a proxy for poverty 
levels). The extent to which imagery-based proxies adequately approximate the 
real phenomena of interest may vary across contexts and needs to be ascertained in 
each specific case. When imagery data are used as proxies, it is important to “ground 
truth” the data to assess the association between the imagery data proxy and the 
real phenomenon on the ground and to deepen the understanding of the real phe-
nomenon to enhance the overall validity of findings. It is also critical to understand 
the potential biases and limitations of each type of image. Remote-sensing imagery 
typically has extensive documentation that details how the data were captured, any 
processing steps performed on the raw data, and any biases that have been observed 
in the data. No comparable documentation typically exists for streetscape photos, 
but each photo does include metadata that should be consulted to ascertain import-
ant information.

From a more practical perspective, imagery data are stored in specific formats and 
require specialized knowledge and expertise to manipulate. Access to specialized 
software and programming experience are needed for most image-processing tasks. 
Although computational capabilities have greatly increased recently, some appli-
cations—especially those involving high-resolution remote-sensing imagery or 
computer vision applications that require a large volume of images—remain compu-
tationally intensive and may require access to additional computing resources.
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