From Pixels to Geospatial Insights: IEG's Experience Leveraging Image Data in Evaluations

Virginia Ziulu

Data Scientist Independent Evaluation Group, World Bank

1 | Image Data in Evaluations

There is a wealth of imagery available for Geospatial Analysis

Optical Daylight Satellite Image (Source: Google Earth)

Optical Nighttime Satellite Image (Source: VIIRS)

Streetscape Digital Photo (Source: Mapillary)

Aerial (Drone) Imagery
(Source: Dar Rapid Transit Agency)

Synthetic Aperture Radar (SAR) Image (Source: ERS-2, ASF DAAC)

Techniques

- geographic information system (GIS)
- remote sensing
- photogrammetry
- machine learning
- computer vision

Semantic segmentation using convolutional neural networks.

Source: UPSNet-101-M Cityscapes.

2 | Applications in IEG Evaluations

Location: Tirana (Albania). Data source: Landsat.

Measurement

- Objective: to understand to what extent horizontal density changed in upgraded neighborhoods In Tirana (Albania).
- Data source: optical daylight satellite imagery.
- Methodology: supervised classification of satellite imagery to derive land use/land cover model.

0.0 0.3 0.5 0.8 1.0

Location: Tirana (Albania). Data source: Mapillary + additional photos taken by the team.

Measurement

- Objective: to understand to what extent households in upgraded neighborhoods integrated into the formal economy in Tirana (Albania).
- Data source: streetscape digital images.
- Methodology: semantic segmentation (deep learning).

Mozambique's geographically disaggregated GDP in 2009 (left) and 2014 (center). Increase/decrease in GDP between 2009 and 2014 (right). Data source: WorldPop.

GDP at the province level (need) and number of WB project sites per province (access).

Relevance

- Objective: to understand whether the provinces/regions with the highest level of need were targeted by WB.
- Data source: gridded raster data (e.g. population, GDP) + geographically disaggregated survey data.
- Methodology: gridded geospatial analysis.

To cause Back and Cause an

Location: Bus Rapid Transit (BRT), Dar es Salaam (Tanzania). Building parcels source: Microsoft/Bing. Analysis and maps prepared by IEG, World Bank Group.

Effectiveness

- Objective: to assess how different land uses were impacted by a transport project, evaluating its effectiveness in promoting sustainable spatial transformation.
- Data source: Microsoft/Bing building parcel data (derived from high-resolution satellite imagery)
- Methodology: Gaussian Mixture Model.

Analysis and maps prepared by IEG. World Bank Group.

3 | Practical Considerations

- Possibility to augment existing traditional data sources.
- Large repositories of publicly available data (e.g. satellite images, digital photos)
- There is a global 5-decade time series of satellite data.
- Satellite data can be aggregated at different levels.
- Increase in computational capacity allows to tap new data sources (such as geocoded photos shared online).

... but several challenges remain

- It is essential to construct validity challenges.
- Matching survey data to geocoded image data might be challenging due to coordinates displacement.
- Critical issues when working with crowdsourced data are validity and accuracy.
- Substantial data storage capacity and computation resources might be needed.
- Publicly available satellite data might not have sufficient resolution for some applications.

Conclusion

- Imagery data can be useful to measure dynamics of change across different geographies/time periods.
- Imagery data can be layered with other data sources to construct new variables.
- Imagery data –in combination with other sources of data- can help answer evaluation questions on relevance or effectiveness.
- It is critical to understand the limitations of each type of image data.
- It is important to 'groundtruth' imagery data to (1) assess the association between the imagery data proxy and the real phenomenon on the ground; (2) deepen the understanding of the real phenomenon on the ground to enhance the overall validity of findings of the imagery data analysis.

Resources

Leveraging Image Data for Evaluations (Methods Paper)

https://ieg.worldbankgroup.org/evaluations/leveraging-imagery-data-evaluations

Poverty Mapping: Innovative Approaches to Creating Poverty Maps with New Data Sources (Methods Paper)

https://ieg.worldbankgroup.org/evaluations/poverty-mapping-innovative-approaches-creating-poverty-maps-new-data-sources

Why evaluators should embrace the use of geospatial data during Covid-19 (Coronavirus) and beyond (Blog)

https://ieg.worldbankgroup.org/blog/why-evaluators-should-embrace-use-geospatial-data-during-covid-19-coronavirus-and-beyond

When evaluators cannot make it to the field, they can always observe from space (Blog)

https://ieg.worldbankgroup.org/blog/when-evaluators-cannot-make-it-field-they-can-always-observe-space

Impacts of energy efficiency projects in developing countries: Evidence from a spatial difference-in-differences analysis in Malawi (peer reviewed journal)

 $\frac{https://www.sciencedirect.com/science/article/pii/S0973082623000522?casa_token=5LfULYYD9nwAAAAA:0Yx5GJNyhEoDhOnML-I7_60xa_2zDPoU7jcigpe2qGzII7dEyc2nLRWmC-u8oO6vnFldEG4on8M$

Thank You!