Remote Sensing Innovations and their Role in Shaping the Future of Evaluations

Senior Geospatial Scientist

April 11th, 2023, World Bank

Geospatial Impact Evaluation

Remote Sensing of Plant Phenology

- **Time-series** remote sensing (e.g., normalized difference/enhanced vegetation indices NDVI/EVI)
- Vegetation phenology

Remote Sensing of Plant Phenology

differentiate vegetation types

- **NDVI** from Landsat imagery
- The highest **phenology difference** during March

Remote Sensing of Plant Phenology

vegetation conditions

- Shrub vs. grass
 greenness from
 camera images
- Grass greenness correlates with precipitation in drylands

crop conditions

- **Time-series** remote sensing for detecting infected cotton
- Healthy cotton exhibits greater vegetation greenness than infected cotton

crop productivity

- Increased NDVI from the year after completion of irrigation projects
- Improved water

 availability d for crop
 production after
 completion of irrigation
 projects

mapping crop types

The first few months right after sowing, shows a gradual green-up and vegetative growth. The maturity phase is a bit longer and follows a sudden decline due to harvest.

mapping crop types

- Limited ground observations hinder both retrospective and prospective analyses
- Cluster analysis groups similar data points together for analysis

Remote Sensing of Evapotranspiration

- Surface-Energy-Balance
 model using
 Landsat/Sentinel imagery
- Hydrologic response of vegetation types (e.g., reforested stands, crops)
- Estimate
 evapotranspiration for water savings

Remote Sensing of Evapotranspiration

- **Daily average ET** and precipitation of forest types
- **Higher water demands** of invasive plants except during green up and post-high precipitation

Remote Sensing of Evapotranspiration

characteristics of crops

- Characteristics of evapotranspiration and water consumption of different underlying surfaces
- Precipitation is the main factor affecting the water consumption of the different underlying surfaces

Ecohydrological Modeling

- Save ~38% water by replacing almond w/ vineyard farms
- Sustainable farming solutions

Remote Sensing & Cloud Computing

- Scalability
- Storage and handling of data
- Machine learning and AI capabilities
- Processing speed
- Cost efficiency

- Data security and compliance
- Integration capabilities
- Advanced analytics
- User-friendly interface
- Innovation and future readiness

Earth Engine Apps

global forest change

Earth Engine Apps

Q Search places

Earth Engine Apps

Geometry Imports

grazing intensity

Earth Engine Apps

Q Search places

Pasture Parameters 2017

- Click a point on the map to inspect. Please, note that grazing intensity and carbon sequestration values are valid for grassland areas only.
- lon: 64.72
- lat: 50.22
- Grazing Intensity: 9.7 %

08- 07- 08- 09-17 17 17 17

Satellite

Soft Blue

Earth Engine Apps

flood mapping

Earth Engine Apps

FLOOD EXTRACTION APPLICATION

This app allows a user to visualize the flooded area within the flood prone area in the Southern part of Somalia. It uses Sentinel 1 and it allows a user to select an area of interest, before floods period and after floods period. On the background, the script does an image difference between the two periods selected and assumes that whatever has changed between the two periods is the addition of floods. Additional information such as urban areas, population and crop lands affected is also added to the panel.

Select area of interest

Jowhar 🌲

Select Period Before Floods

Start Date(YYYY-MM-DD) End Date(YYYY-MM-DD)

2020-03-01 2020-03-31

Select Period During Floods

Start Date (YYYY-MM-DD) End Date (YYYY-MM-DD)

2020-04-01 2020-04-30

Calculate

Reset Map

Thank You!

Kunwar K. Singh

Senior Geospatial Scientist kksingh@wm.edu

